
 

Single Currency Bermudan Swaption Valuation 

 

The underlying security of a single currency Bermudan swaption is an interest-rate swap, which 

is specified by respective payer and receiver legs.  Each of the legs above can pay a fixed rate, 

Libor or CMS rate.  The owner of the Bermudan swaption can choose to enter into the swap 

above at certain pre-defined exercise times; upon exercise, the owner 

• must pay all payer-leg quantities that reset on or after the exercise time, and 

• will receive all receiver-leg quantities that reset on or after the exercise time. 

 

The pricing method is based on Jamshidian’s Libor rate model (i.e., where Libor rates are 

modeled simultaneously under the spot Libor measure).  Furthermore, we value a Bermudan 

swaption based on the Monte Carlo technique presented by Longstaff and Schwartz towards 

American style pricing. 

 

Let 1T ,…, NT , where NTT  ...0 1 , be common Libor reset points.  Here we assume that all 

interest rate reset and Bermudan exercise times belong to the set of common reset points,  T . 

 

We consider an interest-rate swap consisting of respective receiver and payer legs.  Here the 

payer leg is specified by 

• reset points, Mtt ,...,1 , where    Tt   and Mtt  ...1 , 

• an amount, ( )ii ttR −+1 , payable at time 1+it , for .1,...,1 −= Mi   

 

Here R  can be a fixed rate, a Libor or a CMS rate.  In the case of an n -period Libor rate,  
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where 

• 
pi Tt = , 

• iii TT −= +1 ,  

• ),( TtP  is the price at time t  of a zero-coupon bond, which matures at T  and has $1 

face value. 

 

In the case of a single period Libor rate, for example, 
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For an m -period CMS rate with frequency, f  (where f  is a whole number of consecutive 

common reset periods), 
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For example, if 1=f  (i.e., the CMS has reset times that correspond to consecutive common 

reset points), then 
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Let the receiver leg be similarly defined with respect to the reset points, l ,...,1 . 

 



We now consider exercise points, 
ptt ,...,1
, such that    Tt  .  Here the Bermudan swaption can 

be exercised at any point belonging to  t . If the option is exercised at time kt , for some 

 pk ,...,1 , then  

• the owner must pay all payer-leg quantities that set at points it  such that ki tt  , and 

• the owner receives all receiver-leg quantities that set at points i  such that ki t . 

 

We model Libor rates under the spot Libor measure, which has numeraire process, 
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where ),( TtP  denotes the price at time t  of a zero coupon bond with maturity of T  (ref 

https://finpricing.com/lib/FiBondCoupon.html).   

 

Let  t  denote the integer, i , such that ii TtT −1 .  Under the spot Libor measure, we assume 

that, for 1,...,1 −= Ni  and 0 it T  , 
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 ,             (3.1.1) 

 

where 

• 4W


  is a vector of uncorrelated, standard Brownian motions, 

• 4


 is a time deterministic volatility vector, which we define below. 

 

We consider a volatility vector of the form 

https://finpricing.com/lib/FiBondCoupon.html
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Here 

( )xixi

1coscos)( −=  

 

denotes a Chebyshev polynomial of the first kind. 

 



In the above, the parameters  

21,,,,,, cba , ( )ija ,   (3.1.2) 

 

are determined from calibration. 

 

Let t  be an exercise time.  Suppose that the payer leg has n  future reset times, ntt ,...,1 , such that 

1,..., nt t t .  Furthermore assume that an interest rate quantity, ip , for 1,..., 1i n= − , sets at it  and 

is paid at 1it + .  Similarly assume that the receiver leg has m  future reset times, m ,...,1 , where 

1,..., m t   .  Furthermore assume that an interest rate quantity, ir , for 1,..., 1i m= − , sets at i  

and is received at 1i + . 

 

The payoff from a European option to enter into the swap at t  is then given by 
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    (3.2.1) 

 

where  

• tF  denotes the sigma algebra induced by Brownian motion up to time t , 

• E  denotes expectation with respect to the spot Libor measure. 

 

We price a Bermudan style swaption using a Monte Carlo technique, which is based on the 

approach proposed by Longstaff and Schwartz towards American style pricing using simulation.  

In particular, at every exercise time, we must solve a linear least squares problem, and then 

decide whether to exercise the option. 



 

Let   denote a Libor rate sample path.  At an exercise time, t , let 

• ( )e  denote the sample value for the associated European style payoff, of the form 

(3.2.1), 

• ( )h  be the sample holding value for the Bermudan style option. 

 

We then solve in a least squares sense, 
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for the unknowns, 51,..., AA , where  

• n  is the total number of Monte Carlo sample paths, 

•   ranges over all sample paths such that the ( ) 0e  (i.e., the European style payoff 

sample value is positive). 

 

After calculating the coefficients,  iA , the option is exercised at t  for the sample path,  , if 
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With respect to the implementation above for Bermudan style pricing, we note the following.  

From Formula (3.2.1) observe that, at exercise time t , the payoff includes terms of the form 
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where r  is a  -measurable interest rate quantity. To evaluate the European style payoff (3.3.1), 

we must calculate the sample value 
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Here we approximate (3.3.2) by  

( )( )   ),( tPr     (3.3.3) 

 

where ),( tP   is the price at time t  of a zero-coupon bond with maturity,  , and face value, $1.  

In the above trades off accuracy for efficiency in calculation speed; we investigate, numerically, 

the accuracy of the approximation above with respect to European swaption pricing in Section 5. 

 

Furthermore, the choice and number of basis functions to employ in the linear least squares 

problem above is open to experimentation. 

 


